Subscribe to our free daily newsletters
  Robot Technology News  




Subscribe to our free daily newsletters



ROBO SPACE
Engineered swarmbots rely on peers for survival
by Staff Writers
Durham NC (SPX) Mar 08, 2016


These video clips show the swarmbots in action. In the first scene, a normal population of bacteria (pink) grow out of control and break free of their casing. In the second, swarmbots (red) are strictly constrained to their holding cell. Image courtesy Duke University. Watch a video on the research here.

Duke University researchers have engineered microbes that can't run away from home; those that do will quickly die without protective proteins produced by their peers.

Dubbed "swarmbots" for their ability to survive in a crowd, the system could be used as a safeguard to stop genetically modified organisms from escaping into the surrounding environment. The approach could also be used to reliably program colonies of bacteria to respond to changes in their surrounding environment, such as releasing specific molecules on cue.

The system is described online February 29, 2016, in Molecular Systems Biology.

"Safety has always been a concern when modifying bacteria for medical applications because of the danger of uncontrolled proliferation," said Lingchong You, the Paul Ruffin Scarborough Associate Professor of Engineering at Duke University.

"Other labs have addressed this issue by making cells rely on unnatural amino acids for survival or by introducing a 'kill switch' that is activated by some chemical," You said. "Ours is the first example that uses collective survival as a way of intrinsically realizing this safeguard."

In the experiment, You and his colleagues engineered a non-pathogenic strain of E. coli to produce a chemical called AHL. They also modified the cells so that, in high enough concentrations, AHL causes them to produce an antidote to antibiotics. When the population of E. coli is dense enough, the antidote keeps them alive, even in the presence of antibiotics that would otherwise kill them.

The researchers then confined a sufficiently large number of the bacteria to a capsule and bathed it in antibiotics. As long as the E. coli remained inside their container where their density was high, they all survived. But if individual bacteria escaped, they were quickly killed off by the antibiotic.

While this specific example would not work in general environments without the antibiotic present, You says that the experiments are a proof of concept. The concept can be applied to other circuits that can implement collective survival in one or multiple populations.

"In general, this concept does not depend on the use of antibiotics," said You. "There are multiple directions we are hoping to follow with this platform. We're using non-pathogenic E. coli, but we hope to demonstrate that the same concept can be established with a probiotic strain of bacteria."

"We can imagine programming probiotics that can respond to changes in their environmental conditions," said Shuqiang Huang, a postdoctoral associate in You's lab. "That response could include delivering proteins or chemicals to modulate the microbiome."

Another way to take advantage of the technology would be to insert a contained population of bacteria that could help the body respond to intruders.

"We want to program cells to respond to signals produced by pathogenic bacteria," said Anna Lee, a graduate student in You's lab, who plans to pursue this line of research for her doctoral thesis. "We could inhibit their virulence and attack them at the same time."

"This is the foundation," said You. "Once we've established the platform, then we have the freedom to introduce whatever proteins we choose and allow these cells to engage in many different applications."

"Coupling spatial segregation with synthetic circuits to control bacterial survival." Shuqiang Huang, Anna Lee, Ryan Tsoi, Feilun Wu, Ying Zhang, Kam Leong, and Lingchong You. Molecular Systems Biology, Online Feb. 29, 2016. DOI: 10.15252/msb.20156567


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Duke University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
In emergencies, should you trust a robot
Atlanta GA (SPX) Mar 08, 2016
In emergencies, people may trust robots too much for their own safety, a new study suggests. In a mock building fire, test subjects followed instructions from an "Emergency Guide Robot" even after the machine had proven itself unreliable - and after some participants were told that robot had broken down. The research was designed to determine whether or not building occupants would trust a ... read more


ROBO SPACE
Intelsat and L-3 demonstrate automatic beam switching for UAVs

France, Britain sign 2bn euro combat drone programme deal

White House to release data on drone strikes

British engineers launch ground breaking drone defence technology

ROBO SPACE
Electron-beam imaging can see elements that are 'invisible' to common methods

New radar system set for testing

Scaling up tissue engineering

UMass Amherst team offers new, simpler law of complex wrinkle patterns

ROBO SPACE
Demystifying mechanotransduction ion channels

Quantum dot solids: This generation's silicon wafer

World's first parallel computer based on biomolecular motors

Topological insulators: Magnetism is not causing loss of conductivity

ROBO SPACE
EDF finance chief quits over British nuclear power plant plan

AREVA Upgrades Reactor Coolant Pumps at Surry Power Station

German states file challenge against Belgian nuclear plants

Closure of France's oldest nuclear plant begins this year

ROBO SPACE
Top IS commander targeted in coalition strike in Syria: US official

Somalia Shebab disputes numbers 'martyred' in US airstrike

Five 'terrorists' killed in security operation near Tunisia-Libya border: ministry

Little to show for in Boko Haram-IS partnership: analysts

ROBO SPACE
China emissions goals less ambitious than 2015 cuts: plan

Europe 2030: Energy saving to become 'first fuel'

New model maps energy usage of every building in Boston

The forecast for renewable energy in 2016

ROBO SPACE
Hundred million degree fluid key to fusion

Multi-scale simulations solve a plasma turbulence mystery

Syracuse chemists combine biology, nanotechnology to create alternate energy source

Plasma processing technique takes SNS accelerator to new energy highs

ROBO SPACE
Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

China's ambition after space station

Sky is the limit for China's national strategy




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement