Subscribe free to our newsletters via your
  Robot Technology News  

Subscribe free to our newsletters via your

Toward Machines that Improve with Experience
by Staff Writers
Washington DC (SPX) Mar 17, 2017

In this artist's conception, a driverless car's sensors scan the environs to relentlessly inform the vehicle's machine-learning (ML) system, which uses the data to guide current driving actions but also to modify its own programming and database so that the car becomes an ever safer means of transportation that can handle ever more real-world situations. For a larger version of this image please go here.

Self-driving taxis. Cell phones that react appropriately to spoken requests. Computers that outcompete world-class chess and Go players. Artificial Intelligence (AI) is becoming part and parcel of the technological landscape-not only in the civilian and commercial worlds but also within the Defense Department, where AI is finding application in such arenas as cybersecurity and dynamic logistics planning.

But even the smartest of the current crop of AI systems can't stack up against adaptive biological intelligence. These high-profile examples of AI all rely on clever programming and extensive training datasets-a framework referred to as Machine Learning (ML)-to accomplish seemingly intelligent tasks. Unless their programming or training sets have specifically accounted for a particular element, situation, or circumstance, these ML systems are stymied, unable to determine what to do.

That's a far cry from what even simple biological systems can do as they adapt to and learn from experience. And it's light years short of how, say, human motorists build on experience as they encounter the dynamic vagaries of real-world driving-becoming ever more adept at handling never-before-encountered challenges on the road.

This is where DARPA's new Lifelong Learning Machines (L2M) program comes in.

The technical goal of L2M is to develop next-generation ML technologies that can learn from new situations and apply that learning to become better and more reliable, while remaining constrained within a predetermined set of limits that the system cannot override.

Such a capability for automatic and ongoing learning could, for example, help driverless vehicles become safer as they apply knowledge gained from previous experiences-including the accidents, blind spots, and vulnerabilities they encounter on roadways-to circumstances they weren't specifically programmed or trained for.

"Life is by definition unpredictable. It is impossible for programmers to anticipate every problematic or surprising situation that might arise, which means existing ML systems remain susceptible to failures as they encounter the irregularities and unpredictability of real-world circumstances," said L2M program manager Hava Siegelmann.

"Today, if you want to extend an ML system's ability to perform in a new kind of situation, you have to take the system out of service and retrain it with additional data sets relevant to that new situation. This approach is just not scalable."

To get there, the L2M program aims to develop fundamentally new ML mechanisms that will enable systems to learn from experience on the fly-much the way children and other biological systems do, using life as a training set. The basic understanding of how to develop a machine that could truly improve from experience by gaining generalizable lessons from specific situations is still immature. The L2M program will provide a unique opportunity to build a community of computer scientists and biologists to explore these new mechanisms.

"Enabling a computer to learn even the simplest things from experience has been a longstanding but elusive goal," said Siegelmann. "That's because today's computers are designed to run on prewritten programs incapable of adapting as they execute, a model that hasn't changed since the British polymath Alan Turing developed the earliest computing machines in the 1930s. L2M calls for a new computing paradigm."

The four-year L2M program features two technical areas. The first aims to develop ML frameworks that can continuously apply the results of past experience and adapt "lessons learned" to new data or situations. Simultaneously, it calls for the development of techniques for monitoring an ML system's behavior, setting limits on the scope of its ability to adapt, and intervening in the system's functions as needed. The research will encompass network theory, algorithms, software, and computer architectures.

The second technical area, which derives from Siegelmann's longstanding interest in biological learning mechanisms, will focus specifically on how living systems learn and adapt and will consider whether and how those principles and techniques can be applied to ML systems. "Life has had billions of years to develop approaches for learning from experience," Siegelmann said.

"There are almost certainly some secrets there that can be applied to machines so they can be not just computational tools to help us solve problems but responsive and adaptive collaborators."

The L2M program manager and support staff will host a Proposers Day on March 30, 2017, at the DARPA Conference Center in Arlington, VA. The registration deadline for the event is March 24, 2017, at noon (EST). Participants must register through the registration website. More details about the Proposers Day are specified in a Special Notice (DARPA-SN-17-17) that was posted on the website. A Broad Agency Announcement (BAA) that more fully describes the L2M program is expected to be posted on prior to the Proposers Day.

Songs that make robots cry
Osaka, Japan (SPX) Mar 13, 2017
Music, more than any art, is a beautiful mix of science and emotion. It follows a set of patterns almost mathematically to extract feelings from its audience. Machines that make music focus on these patterns, but give little consideration to the emotional response of their audience. An international research team led by Osaka University together with Tokyo Metropolitan University, imec in Belgiu ... read more

Related Links
Defense Advanced Research Projects Agency
All about the robots on Earth and beyond!

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

FAA Approval Could Mean Big Things for UAS Adoption

Heron 1 UAV becomes operational in Singapore

Rakuten and AirMap announce joint venture to bring unmanned traffic management platform to Japan

Progress Toward an Ability to Recover Unmanned Aerial Vehicles on the Fly

Using lasers to create ultra-short pulses

The strangeness of slow dynamics

Ecosystem For Near-Earth Space Control

Airbus ships first high-power all-electric EUTELSAT 172B satellite to Kourou for Eutelsat

Liquid fuel for future computers

Simultaneous detection of multiple spin states in a single quantum dot

Unexpected, star-spangled find may lead to advanced electronics

Bushwhacking into Unexplored Transistor Territories

Loss-hit Toshiba nosedives on fears about future

The EIC and Nuclear AMRC sign MoU

German energy company RWE evolving for success

Potential approach to how radioactive elements could be 'fished out' of nuclear waste

'Jihadists' kill civilians, soldiers in north Mali

January raid in Yemen killed 4 to 12 civilians: US

IS hopes to hold onto shreds of 'caliphate': US official

Turkey, Russia, US military chiefs seek better coordination against IS

Emissions flat for three years in a row, IEA says

New research urges a rethink on global energy subsidies

CO2 stable for 3rd year despite global growth: IEA

New Zealand lauded for renewables, but challenges remain

TU Graz researchers show that enzyme function inhibits battery ageing

Headphone batteries explode on flight to Australia

New feedback system could allow greater control over fusion plasma

Exhaust fumes as a resource

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement