Robot Technology News  
ROBO SPACE
A system to synthesize realistic sounds for computer animation
by Staff Writers
Stanford CA (SPX) Aug 09, 2018

By computing pressure waves cast off by rapidly moving and vibrating surfaces - such as a cymbal - this new sound synthesis system developed by Stanford researchers can automatically render realistic sound for computer animations.

Advances in computer-generated imagery have brought vivid, realistic animations to life, but the sounds associated with what we see simulated on screen, such as two objects colliding, are often recordings. Now researchers at Stanford University have developed a system that automatically renders accurate sounds for a wide variety of animated phenomena.

"There's been a Holy Grail in computing of being able to simulate reality for humans. We can animate scenes and render them visually with physics and computer graphics, but, as for sounds, they are usually made up," said Doug James, professor of computer science at Stanford University.

"Currently there exists no way to generate realistic synchronized sounds for complex animated content, such as splashing water or colliding objects, automatically. This fills that void."

The researchers will present their work on this sound synthesis system as part of ACM SIGGRAPH 2018, the leading conference on computer graphics and interactive techniques.

In addition to enlivening movies and virtual reality worlds, this system could also help engineering companies prototype how products would sound before being physically produced, and hopefully encourage designs that are quieter and less irritating, the researchers said.

"I've spent years trying to solve partial differential equations - which govern how sound propagates - by hand," said Jui-Hsien Wang, a graduate student in James' lab and in the Institute for Computational and Mathematical Engineering (ICME), and lead author of the paper.

"This is actually a place where you don't just solve the equation but you can actually hear it once you've done it. That's really exciting to me and it's fun."

Predicting sound
Informed by geometry and physical motion, the system figures out the vibrations of each object and how, like a loudspeaker, those vibrations excite sound waves. It computes the pressure waves cast off by rapidly moving and vibrating surfaces but does not replicate room acoustics.

So, although it does not recreate the echoes in a grand cathedral, it can resolve detailed sounds from scenarios like a crashing cymbal, an upside-down bowl spinning to a stop, a glass filling up with water or a virtual character talking into a megaphone.

Most sounds associated with animations rely on pre-recorded clips, which require vast manual effort to synchronize with the action on-screen. These clips are also restricted to noises that exist - they can't predict anything new.

Other systems that produce and predict sounds as accurate as those of James and his team work only in special cases, or assume the geometry doesn't deform very much. They also require a long pre-computation phase for each separate object.

"Ours is essentially just a render button with minimal pre-processing that treats all objects together in one acoustic wave simulation," said Ante Qu, a graduate student in James' lab and co-author of the paper.

The simulated sound that results from this method is highly detailed. It takes into account the sound waves produced by each object in an animation but also predicts how those waves bend, bounce or deaden based on their interactions with other objects and sound waves in the scene.

Challenges ahead
In its current form, the group's process takes a while to create the finished product. But, now that they have proven this technique's potential, they can focus on performance optimizations, such as implementing their method on parallel GPU hardware, that should make it drastically faster.

And, even in its current state, the results are worth the wait.

"The first water sounds we generated with the system were among the best ones we had simulated - and water is a huge challenge in computer-generated sound," said James. "We thought we might get a little improvement, but it is dramatically better than previous approaches even right out of the box. It was really striking."

Although the group's work has faithfully rendered sounds of various objects spinning, falling and banging into each other, more complex objects and interactions - like the reverberating tones of a Stradivarius violin - remain difficult to model realistically. That, the group said, will have to wait for a future solution.


Related Links
Stanford University
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Chip labour: Robots replace waiters in China restaurant
Shanghai (AFP) Aug 5, 2018
The little robotic waiter wheels up to the table, raises its glass lid to reveal a steaming plate of local Shanghai-style crayfish and announces in low, mechanical tones, "Enjoy your meal." The futuristic restaurant concept is the latest initiative in Chinese e-commerce giant Alibaba's push to modernise service and retail in a country where robotics and artificial intelligence are increasingly being integrated into commerce. Raising efficiency and lowering labour costs are the objectives at Alib ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
An insect-inspired drone deforms upon impact

AeroVironment awarded contract for drone data links for Norway

Insitu receives contract for ScanEagle UAVs for Afghanistan

Insitu awarded contract for RQ-21 unmanned aerial vehicles

ROBO SPACE
A new classification of symmetry groups in crystal space proposed by Russian scientists

Lasers write better anodes

Better way found to determine the integrity of metals

Recycling provides manufacturers with real competitive and economic advantages

ROBO SPACE
Memory-processing unit could bring memristors to the masses

Extreme conditions in semiconductors

Reversing cause and effect is no trouble for quantum computers

World-first quantum computer simulation of chemical bonds using trapped ions

ROBO SPACE
Extreme makeover: Fukushima nuclear plant tries image overhaul

Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

EDF sees new delay, cost overruns for nuclear reactor

ROBO SPACE
Head of Syrian regime research centre killed: monitor

Civilian casualties 'deeply felt' by anti-IS coalition

Two Americans captured in Syria returned to US

Air raids on last IS pocket in south Syria kill 26 civilians: monitor

ROBO SPACE
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

ROBO SPACE
Looking inside the lithium battery's black box

Chinese-American engineer charged with stealing GE technology

Expanding the limits of Li-ion batteries: Electrodes for all-solid-state batteries

Old mining techniques make a new way to recycle lithium batteries

ROBO SPACE
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.