![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Los Angeles CA (SPX) Jun 23, 2022
Does the nervous system come with instructions for how it should connect to the body or must it figure this out during early development? A new model from researchers at the University of Southern California and Lund University in Sweden suggests that spontaneous movements made by a fetus in the womb (including those kicks) are a key step in getting the body's nervous system "wired up." The researchers' model, published in a pair of papers in the Journal of Neurophysiology, suggests that the complex circuits of the nervous system are not pre-determined by genes but rather are reinforced by body movements. Researchers Henrik Jorntell, Professor, and Jonas M.D. Enander, Post-doctoral Fellow at Lund University, Sweden, and Gerald E. Loeb, Professor of Biomedical Engineering at the University of Southern California, were trying to understand the complex structure of the nervous system --and set out to answer this question: "How and why do strong, spontaneous muscle contractions arise in the fetus?" The hundreds of motor neurons that control each muscle are synchronized in the fetus to create strong muscle contractions that also activate the sensors in the muscles. The new papers show how these correlated patterns of activity can be used to wire up the spinal cord circuitry that coordinates the muscles through reflexes. The brain can then use that circuitry to learn voluntary movements that are well-coordinated, graceful and efficient. The researchers' new model, with its focus on how the body learns and adapts, builds on speculations about evolution that J. Mark Baldwin put forth as early as 1896. A newborn animal with a potentially useful mutation of the musculoskeletal system must survive to reproduce and propagate that mutation. If the animal's nervous system were hardwired for the old body, it probably wouldn't survive. The new model outlines how neural circuits in the spinal cord can learn the mechanics of the new body from its early, spontaneous movements.
Why it matters
Medical Conditions
Robotics The brain learns to use these spinal circuits to generate the graceful and efficient behaviors that we take for granted. Robots are often clumsy because they lack such circuits. The circuits of the spinal cord can't be applied to a robot because the mechanics of the robot are different from animals. The researchers say their new research provides a way for any robot to recapitulate the stages of human development to develop the equivalent of spinal circuits for its body.
Research Report:"A Model for Self-Organization of Sensorimotor Function: Spinal Interneuronal Integration"
![]() ![]() MIT engineers devise a recipe for improving any autonomous robotic system Boston MA (SPX) Jun 22, 2022 Autonomous robots have come a long way since the fastidious Roomba. In recent years, artificially intelligent systems have been deployed in self-driving cars, last-mile food delivery, restaurant service, patient screening, hospital cleaning, meal prep, building security, and warehouse packing. Each of these robotic systems is a product of an ad hoc design process specific to that particular system. In designing an autonomous robot, engineers must run countless trial-and-error simulations, often in ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |