Cockroaches and lizards inspire new robot developed by Ben-Gurion University researcher by Staff Writers Beer-Sheva, Israel (SPX) Nov 03, 2020
A new high-speed amphibious robot inspired by the movements of cockroaches and lizards, developed by Ben-Gurion University of the Negev (BGU) researchers, swims and runs on top of water at high speeds and crawls on difficult terrain. The mechanical design of the AmphiSTAR robot and its control system were presented virtually last week at the IROS (International Conference on Intelligent Robots and Systems) by Dr. David Zarrouk, director, Bioinspired and Medical Robotics Laboratory in BGU's Department of Mechanical Engineering, and graduate student Avi Cohen. "The AmphiSTAR uses a sprawling mechanism inspired by cockroaches, and it is designed to run on water at high speeds like the basilisk lizard," says Zarrouk. "We envision that AmphiSTAR can be used for agricultural, search and rescue and excavation applications, where both crawling and swimming are required." The palm-size AmphiSTAR, part of the family of STAR robots developed at the lab, is a wheeled robot fitted with four propellers underneath whose axes can be tilted using the sprawl mechanism. The propellers act as wheels over ground and as fins to propel the robot over water while swimming and running on water at high speeds of 1.5 m/s. Two air tanks enable it to float and transition smoothly between high speeds when hovering on water to lower speeds swimming, and from crawling to swimming and vice versa. The experimental robot can crawl over gravel, grass and concrete as fast as the original STAR robot and can attain speeds of 3.6 m/s (3.3 mph). "Our future research will focus on the scalability of the robot and on underwater swimming," Zarrouk says. Video of AmphiSTAR
Translating lost languages using machine learning Boston MA (SPX) Oct 22, 2020 Recent research suggests that most languages that have ever existed are no longer spoken. Dozens of these dead languages are also considered to be lost, or "undeciphered" - that is, we don't know enough about their grammar, vocabulary, or syntax to be able to actually understand their texts. Lost languages are more than a mere academic curiosity; without them, we miss an entire body of knowledge about the people who spoke them. Unfortunately, most of them have such minimal records that scientists ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |