Robot Technology News  
ROBO SPACE
New software allows industrial robots to achieve touch sensitivity and precision close to human hands
by Staff Writers
Singapore (SPX) Dec 01, 2021

NTU Singapore Assoc Prof Pham Quang Cuong (right), co-founder of Eureka Robotics and Dr Hung Pham (left), co-founder and Chief Technology Officer of Eureka Robotics with a Denso Wave robot equipped with the Dynamis force feedback technology software in the background

Eureka Robotics, a tech spin-off from Nanyang Technological University, Singapore (NTU Singapore), has developed a technology, called Dynamis, that makes industrial robots nimbler and almost as sensitive as human hands, able to manipulate tiny glass lenses, electronics components, or engine gears that are just millimetres in size without damaging them.

This proprietary force feedback technology developed by NTU scientists was previously demonstrated by the "Ikea Bot" which assembled an Ikea chair in just 20 minutes. The breakthrough was first published in the top scientific journal Science in 2018 and went viral on the internet when it could match the dexterity of human hands in assembling furniture.

NTU Associate Professor Pham Quang Cuong, Co-founder of Eureka Robotics, said they have since upgraded the software technology, which will be made available for a large number of industrial robots worldwide by Denso Wave, a market leader in industrial robots, which is part of the Toyota Group.

Clients purchasing the latest robots sold by Denso Wave will have an option to include this new technology as part of the force controller, which reads the force detected by a force sensor on the robot's wrist and applies force accordingly: apply too little force and the items may not be assembled correctly while applying too much force could damage the items.

Mastering "touch sensitivity" and dexterity like human hands has always been the holy grail for roboticists, says Assoc Prof Pham, as the programming of the force controller is extremely complicated, requiring long hours to perfect the grip just for a specific task.

"Today, Dynamis has made it easy for anyone to programme touch-sensitive tasks that are usually done by humans, such as assembly, fine manipulation, polishing or sanding," explains Assoc Prof Pham, who is also the Deputy Director of the Robotics Research Centre at NTU's School of Mechanical and Aerospace Engineering.

"These tasks all share a common characteristic: the ability to maintain consistent contact with a surface. If our human hands are deprived of our touch sensitivity, such as when wearing a thick glove, we would find it very hard to put tiny Lego blocks together, much less assemble the tiny components of a car engine or of a camera used in our mobile phones."

Hiroyasu Baba, FA/Robotics Business Unit Product Planning Department, Manager of Denso Wave, said: "Due to its high basic performance and openness, DENSO robots are the preferred choice by companies and universities with advanced initiatives in the field of robotics. NTU Singapore and Eureka Robotics have also been using DENSO robots for this reason.

"Because of this relationship, joint development began naturally, and we were able to launch this product smoothly. The technology, which will be installed in DENSO robots, is a technology for force feedback, which is becoming more and more important in the practical use of robotics. Thanks to the development capabilities of Eureka Robotics, the system is advanced, yet easy to use and light enough to be integrated into our standard robot controllers."

How the new software works
Known as "Force Sensor Robust Compliance Control", the new software powered by Dynamis requires only a single parameter to be set - which is stiffness of the contact, whether it is soft, medium, or hard.

Despite its "simple set-up", it has been shown to out-perform conventional robotic controllers which required an enormous amount of expertise and time to fine-tune.

Dynamis is a complex Artificial Intelligence (AI) algorithm developed by Assoc Prof Pham and his former PhD student, now Co-founder and CTO of Eureka Robotics, Dr Hung Pham.

This backbone technology was further improved and was first deployed in Eureka's custom-built robots, such as Archimedes, which can handle fragile optical lenses and mirrors with human-like dexterity, now used by multiple companies worldwide.

Current robots in the market have either high accuracy but low agility (where robots perform the same movements repeatedly such as in a car factory), or low accuracy but high agility (such as robots handling packages of different sizes in logistics).

By deploying this technology, robotics engineers can now imbue robots with both High Accuracy and High Agility (HAHA) on a large scale, paving the way for industrial applications that were previously very difficult or impossible to implement, such as handling and assembly of delicate, fragile objects such as optical lenses, electronics components, or engine gears.

To be equipped with the "Force Sensor Robust Compliance Control" capability, the large number of robots already running on Denso Wave's RC8 controllers will only be required to perform a simple software update from December 2021 onwards, while newly shipped RC8 controllers will come packed with the software available for activation.

Incubating Eureka Robotics and helping to speed up its commercialisation processes is NTU's innovation and commercialisation company NTUitive, as part of the Innovation pillar under the NTU 2025 strategic plan, which seeks to tackle some of the world's most pressing challenges.


Related Links
Nanyang Technological University
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
First 'robotaxis' enter service in Beijing
Beijing (AFP) Nov 26, 2021
It looks like a normal car but the white taxi by the kerb has nobody driving it, and communicates with customers digitally to obtain directions and take payment. Beijing this week approved its first autonomous taxis for commercial use, bringing dozens of the so-called "robotaxis" to the streets of the Chinese capital. The vehicles can only carry two passengers at a time and are confined to the city's southern Yizhuang area. An employee of the taxi firm also sits in the front of the car in c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
BRIPAC evaluates the capabilities of the Passer UAS within the framework of the RAPAZ Program

Northrop Grumman awarded Mission Planning Contract to increase Global Hawk flexibility

SwRI successfully demonstrated drone autonomy technology at 2021 EnRicH hackathon

Secret General Atomics drone reportedly packs double the firepower of current fleet

ROBO SPACE
Researchers team up to get a clearer picture of molten salts

Reshaping the plastic lifecycle into a circle

Researchers develop novel 3D printing technique to engineer biofilms

Light-powered soft robots could suck up oil spills

ROBO SPACE
Shrinking qubits for quantum computing with atom-thin materials

Physicists exploit space and time symmetries to control quantum materials

A simpler design for quantum computers

Programmable interaction between quantum magnets

ROBO SPACE
Researchers develop new membrane for uranium extraction from seawater

GE Hitachi Nuclear Energy selected by Ontario for Darlington Nuclear Project

NASA, INL take next step toward developing dynamic radioisotope power system

Robotics specialists share their ongoing projects

ROBO SPACE
US removes Colombia's FARC from terrorism list

US to remove Colombia's FARC from terror list

Belgium searches military barracks in far-right probe

Jury members urged clemency for tortured Guantanamo detainee

ROBO SPACE
30,000 UK homes still without power after storm

Accelerated renewables-based electrification paves the way for a post-fossil future

China's carbon emissions fall for first time since Covid lockdowns

Top banking regulator urges climate rules for lenders

ROBO SPACE
An energy-storage solution that flows like soft-serve ice cream

Scientists identify another reason why batteries can't charge in minutes

Combined heat and power as a platform for clean energy systems

Artificial intelligence to advance energy technologies

ROBO SPACE
Tianzhou cargo craft to help advance science

Rocket industrial park put into operation in Wuhan

Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.