Teaching underwater stingray robots to swim faster and with greater precision using machine learning by Staff Writers Singapore (SPX) May 16, 2022
Researchers from the Singapore University of Technology and Design (SUTD) developed a new approach to model the dynamics of underwater stingray-like robots using Machine Learning. This approach can enable more efficient swimming in complex underwater environments by accurately predicting required flapping motions for a set of given propulsive force targets. Their study 'DNN-Based Predictive Model for a Batoid-Inspired Soft Robot', published in IEEE-RAL, will pave the way towards better control of autonomous underwater robots. Bio-inspired soft robots are unique due to their elegant, natural movements. However, modelling and controlling soft robot bodies underwater are challenging due to their infinite degrees of freedom and complex dynamics. The research team focussed on developing a suitable Deep Neural Network (DNN) model to predict desired flapping motions to achieve the required locomotion in a rapidly changing environment. Unlike traditional physics-based models, DNN models can provide minimal input-output relationships for the complex dynamics found in soft bodies. Once the team matched the measured propulsive forces generated during DNN model's predicted flapping sequence against the DNN model's target forces, they were confident that DNN would be more suitable to predict and accurately mimic the complex physical properties of soft underwater robots. The experiments were carried out inside a water tank by afixing the robot to a custom-designed 3D printed clamp connected to a 6-axis load cell. The sensor attached to the clamp was used to measure the forces and torques generated during the flapping of the robot's fins. Different input signals were tested on the robot, and the collected forces and torques provided minimal input-output relationships for the complex dynamics found in soft bodied robots. In total, 10 experiments were conducted to collect 100 Force/Torque data sets from 100 different robot input sequences. The new approach simplified the otherwise painstaking modelling process and enabled reliable predictions that could be used for programming underwater robots' flapping sequences to generate desired propulsive forces. "Our research team will continue to explore trained DNN models using integrated sensors and autonomous behaviour control of robots in dynamic underwater environments for marine inspection and exploration," said Assistant Professor Pablo Valdivia y Alvarado, principal investigator from SUTD.
Research Report:DNN-Based Predictive Model for a Batoid-Inspired Soft Robot
NeuroMechFly: A digital twin of Drosophila Lausanne, Switzerland (SPX) May 12, 2022 "We used two kinds of data to build NeuroMechFly," says Professor Pavan Ramdya at EPFL's School of Life Sciences. "First, we took a real fly and performed a CT scan to build a morphologically realistic biomechanical model. The second source of data were the real limb movements of the fly, obtained using pose estimation software that we've developed in the last couple of years that allow us to precisely track the movements of the animal." Ramdya's group, working with the group of Professor Auke Ijs ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |